

DEPARTMENT OF HEALTH AND HUMAN SERVICES

Quality Control – Introduction

The Quality System

The Quality Assurance Cycle

Quality Control

- Definitions
- Qualitative Quality Control
- Quantitative QC How to implement
 - Selection and managing control materials
 - Analysis of QC data
 - Monitoring quality control data

What is Quality Control?

- Process or system for monitoring the quality of laboratory testing, and the accuracy and precision of results
- Routinely collect and analyze data from every test run or procedure
- Allows for immediate corrective action

Designing a QC Program -

- Establish written policies and procedures
 - Corrective action procedures
- Train all staff
- Design forms
- Assure complete documentation and review

Qualitative vs.Quantitative

- Quantitative test
 - measures the amount of a substance present
- Qualitative test
 - determines whether the substance being tested for is present or absent

Qualitative QC

- Quality control is performed for both, system is somewhat different
- Controls available
 - Blood Bank/Serology/Micro
 - RPR/TPHA
 - Dipstick technology
 - Pregnancy

Stains, Reagents, Antisera

- Label containers
 - contents
 - concentration
 - date prepared
 - placed in service
 - expiration date/shelf life
 - preparer

Media Preparation

- Record amount prepared
- Source
- Lot number
- Sterilization method
- Preparation date
- Preparer
- pH
- Expiration date

Microbiology QC

- Check:
 - Sterility
 - Ability to support growth
 - Selective or inhibitory characteristics of the medium
 - Biochemical response
- Frequency
 - Test QC organisms with each new batch or lot number
- Check for growth of fastidious organisms on media of choice – incubate at time and temp recommended
- RECORD Results on Media QC form

Quality Control: Stains and Reagents

- Gram stain QC
 - Use gram positive and gram negative organisms to check stain daily
- Other:
 - Check as used positive and negative reactions

Stock QC organisms

- Organisms to be maintained must be adequate to check all media and test systems.
 - E. coli MacConkey, EMB, susceptibility tests
 - Staphylococcus aureus Blood agar, Mannitol Salt, susceptibility tests
 - Neisseria gonorrhoeae chocolate, Martin-Lewis

Detecting Errors

- Many organisms have predictable antimicrobial test results
 - Staphylococcus spp. are usually susceptible to vancomycin
 - Streptococcus pyogenes are always susceptible to penicillin
 - Klebsiella pneumoniae are resistant to ampicillin

Sources of Error

- If you encounter an unusual pattern
 - rule out error by checking identification of organisms
 - repeat antimicrobial susceptibility test

 Report if repeat testing yields same result, or refer the isolate to a reference laboratory for confirmation

DEPARTMENT OF HEALTH AND HUMAN SERVICES

Quality Control – Quantitative Tests

How to implement a laboratory quality control program

Implementing a QC Program – Quantitative Tests

- Select high quality controls
- Collect at least 20 control values over a period of 20-30
 - days for each level of control
- Perform statistical analysis
- Develop Levey-Jennings chart
- Monitor control values using the Levey-Jennings chart and/or Westgard rules
- Take immediate corrective action, if needed
 - Record actions taken

Selecting Control Materials Calibrators

- Has a known concentration of the substance (analyte) being measured
- Used to adjust instrument, kit, test system in order to standardize the assay
- Sometimes called a standard, although usually not a true standard
- This is not a control

Selecting Control Materials Controls

- Known concentration of the analyte
 - Use 2 or three levels of controls
 - Include with patient samples when performing a test
- Used to validate reliability of the test system

Control Materials Important Characteristics

- Values cover medical decision points
- Similar to the test specimen (matrix)
- Available in large quantity
- Stored in small aliquots
- Ideally, should last for at least 1 year
- Often use biological material, consider biohazardous

Managing Control Materials

- Sufficient material from same lot number or serum pool for one year's testing
- May be frozen, freeze-dried, or chemically preserved
- Requires very accurate reconstitution if this step is necessary
- Always store as recommended by manufacturer

Sources of QC Samples

- Appropriate diagnostic sample
- Obtained from:
 - Another laboratory
 - EQA provider
- Commercial product

Types of Control Materials

- Assayed
 - mean calculated by the manufacturer
 - must verify in the laboratory
- Unassayed
 - less expensive
 - must perform data analysis
- "Homemade" or "In-house"
 - pooled sera collected in the laboratory
 - characterized
 - preserved in small quantities for daily use

Preparing In-House Controls

Criteria for Developing Quality Controls for HIV

- Low positive
- Between the cut off and positive control
- At a level where variability can be followed
- Generally ~2 times the cut off

Production of a QC Sample - Production Protocol

- Materials
- Calculation of Volume
 - stock sample
 - diluent
 - QC batch
- Method
- Validation Acceptance Criteria
 - batch
 - stability

Process for Preparing In-house Controls

- Serial dilution of high positive stock sample
- Select suitable dilution
- Produce large batch
- Test stability
- Test batch variation
- Dispense, label, store

Making Suitable Dilutions

Selecting a Suitable Sample Dilution

Serial Dilutions on Abbott AxSYM HIV-1/HIV-2 MEIA

Doubling Dilutions

Batch Production

- Prepare positive sample
 - centrifuge
 - heat inactivate
- Mix positive sample in diluent
 - magnetic stirrer
- Bottle batch in numbered lots of suitable volume

Stability Testing

Assess the rate of deterioration

QC Sample Storage	e Day 7	Day 14	Day 21	Day 28
-20c	✓	✓	✓	✓
4c	✓	✓	✓	✓
16-25°C	✓	✓	✓	✓

Batch Validation

- Dispense aliquots
- Test aliquots
- Confirm desired titre level
 - compare against target value
- Confirm minimal batch variation
 - acceptable if CV < 20%
 - aim for <10%

Storage of QC Samples

- Validated batch aliquoted into smaller 'user friendly' volumes for storage
- Establish a storage protocol:
 - store at -20°C
 - in use vials stored at 4°C
 - use 0.5 ml vial maximum of one week
 - freeze-dried
 (requires accurate reconstitution)
 - chemically preserved

Quality Control -Quantitative

Analysis of QC Data

How to carry out this analysis?

- Need tools for data management and analysis
 - Basic statistics skills
 - Manual methods
 - Graph paper
 - Calculator
 - Computer helpful
 - Spreadsheet
- Important skills for laboratory personnel

Analysis of Control Materials

- Need data set of at least 20 points, obtained over a 30 day period
- Calculate mean, standard deviation, coefficient of variation; determine target ranges
- Develop Levey-Jennings charts, plot results

Establishing Control Ranges

- Select appropriate controls
- Assay them repeatedly over time
 - at least 20 data points
- Make sure any procedural variation is represented:
 - different operators
 - different times of day
- Determine the degree of variability in the data to establish acceptable range

Measurement of Variability

- A certain amount of variability will naturally occur when a control is tested repeatedly.
- Variability is affected by operator technique, environmental conditions, and the performance characteristics of the assay method.
- The goal is to differentiate between variability due to chance from that due to error.

Measures of Central Tendency

- Data are frequently distributed about a central value or a central location
- There are several terms to describe that central location, or the 'central tendency' of a set of data

Measures of Central Tendency

- Median = the value at the center (midpoint) of the observations
- Mode = the value which occurs with the greatest frequency
- Mean = the calculated average of the values

Calculation of Mean

$$(\overline{X}) = \frac{\mathbf{X}_1 + \mathbf{X}_2 + \mathbf{X}_3 \dots + \mathbf{X}_n}{\mathbf{n}}$$

 \overline{X} = Mean

X₁ = First result

X₂ = Second result

 X_n = Last result in series

n – Total number of results

Calculation of Mean: Outliers

- 1. 192 mg/dL
- 2. 194 mg/dL
- 3. 196 mg/dL
- 4. 196 mg/dL
- 5. 160 mg/dL
- 6. 196 mg/dL

- 7. 200 mg/dL
- 8. 200 mg/dL
- 9. 202 mg/dL
- 10. 255 mg/dL
- 11. 204 mg/dL
- 12. 208 mg/dL
- 13. 212 mg/dL

Calculation of Mean

- 1) 192 mg/dL
- 2) 194 mg/dL
- 3) 196 mg/dL
- 4) 196 mg/dL
- 5) 196 mg/dL
- 6) 200 mg/dL
- 7) 200 mg/dL
- 8) 202 mg/dL
- 9) 204 mg/dL
- 10) 208 mg/dL
- 11) 212 mg/dL

Sum = 2,200 mg/dL

- Mean = the calculated average of the values
- The sum of the values (X₁ + X₂ + X₃ ... X₁₁) divided by the number (n) of observations
- The mean of these 11 observations is (2200 ÷ 11) = 200 mg/dL

Calculation of Mean: ELISA Tests

- Collect optical density (OD) values for controls for each assay run
- Collect cutoff (CO) value for each run
- Calculate ratio of OD to CO (OD/CO) for each data point or observation
 - This ratio standardizes data
- Use these ratio values to calculate the mean

Normal Distribution

- All values are symmetrically distributed around the mean
- Characteristic "bell-shaped" curve
- Assumed for all quality control statistics

Normal Distribution

Normal Distribution

Accuracy and Precision

- The degree of fluctuation in the measurements is indicative of the "precision" of the assay.
- The closeness of measurements to the true value is indicative of the "accuracy" of the assay.
- Quality Control is used to monitor both the precision and the accuracy of the assay in order to provide reliable results.

Precision and Accuracy

Imprecise and inaccurate

Measures of Dispersion or Variability

 There are several terms that describe the dispersion or variability of the data around the mean:

Range

Variance

Standard Deviation

Coefficient of Variation

Range

- Range refers to the difference or spread between the highest and lowest observations.
- It is the simplest measure of dispersion.
- It makes no assumption about the shape of the distribution or the central tendency of the data.

Calculation of Variance (S²)

$$S^2 = \frac{\sum_{(X_1 - \overline{X})}^{(X_1 - \overline{X})}^2}{N-1} = mg^2/dl^2$$

Calculation of Variance

- Variance is a measure of variability about the mean.
- It is calculated as the average squared deviation from the mean.
 - the sum of the deviations from the mean, squared, divided by the number of observations (corrected for degrees of freedom)

Degrees of Freedom

 Represents the number of independent data points that are contained in a data set.

 The mean is calculated first, so the variance calculation has lost one degree of freedom (n-1)

Calculation of Standard Deviation

$$S = \sqrt{\frac{(x_1 - x_1)^2}{N - 1}} = mg/dl$$

Calculation of Standard Deviation

- The standard deviation (SD) is the square root of the variance
 - it is the square root of the average squared deviation from the mean
- SD is commonly used (rather than the variance) since it has the same units as the mean and the original observations
- SD is the principle calculation used in the laboratory to measure dispersion of a group of values around a mean

Standard Deviation and Probability

- For a set of data with a normal distribution, a value will fall within a range of:
 - +/- 1 SD 68.2% of the time
 - +/- 2 SD 95.5% of the time
 - +/- 3 SD 99.7% of the time

Standard Deviation and Probability

- In general, laboratories use the +/- 2 SD criteria for the limits of the acceptable range for a test
- When the QC measurement falls within that range, there is 95.5% confidence that the measurement is correct
- Only 4.5% of the time will a value fall outside of that range due to chance; more likely it will be due to error

Calculation of Coefficient of Variation

- The coefficient of variation (CV) is the standard deviation (SD) expressed as a percentage of the mean
- Ideally should be less than 5%

$$CV = \frac{SD}{mean} \times 100$$

DEPARTMENT OF HEALTH AND HUMAN SERVICES

Monitoring QC Data

Monitoring QC Data

- Use Levey-Jennings chart
- Plot control values each run, make decision regarding acceptability of run
- Monitor over time to evaluate the precision and accuracy of repeated measurements
- Review charts at defined intervals, take necessary action, and document

Levey-Jennings Chart

- A graphical method for displaying control results and evaluating whether a procedure is in-control or out-of-control
- Control values are plotted versus time
- Lines are drawn from point to point to accent any trends, shifts, or random excursions

Levey-Jennings Chart

Levey-Jennings Chart -

Levey-Jennings Chart -

Plot Control Values for Each Run

Time (e.g. day, date, run number)

Levey-Jennings Chart

Calculate the Mean and Standard Deviation; Record the Mean and +/- 1,2 and 3 SD Control Limits

Levey-Jennings Chart - Record and Evaluate the Control Values

Findings Over Time

- Ideally should have control values clustered about the mean (+/-2 SD) with little variation in the upward or downward direction
- Imprecision = large amount of scatter about the mean. Usually caused by errors in technique
- Inaccuracy = may see as a trend or a shift, usually caused by change in the testing process
- Random error = no pattern. Usually poor technique, malfunctioning equipment

Statistical Quality Control Exercise

- Hypothetical control values (2 levels of control)
- Calculation of mean
- Calculation of standard deviation
- Creation of a Levey-Jennings chart

When does the Control Value Indicate a Problem?

- Consider using Westgard Control Rules
- Uses premise that 95.5% of control values should fall within ±2SD
- Commonly applied when two levels of control are used
- Use in a sequential fashion

Westgard Rules

- "Multirule Quality Control"
- Uses a combination of decision criteria or control rules
- Allows determination of whether an analytical run is "in-control" or "out-of-control"

Westgard Rules

(Generally used where 2 levels of control material are analyzed per run)

- 1₂₅ rule
- 1_{3S} rule
- 2_{2S} rule

- R_{4S} rule
- 4_{1S} rule
- 10_x rule

Westgard – 1_{2S} Rule

- "warning rule"
- One of two control results falls outside ±2SD
- Alerts tech to possible problems
- Not cause for rejecting a run
- Must then evaluate the 1_{3S} rule

1_{2S} Rule = A warning to trigger careful inspection of the control data

Westgard – 1_{3S} Rule

- If either of the two control results falls outside of ±3SD, rule is violated
- Run must be rejected
- If 1_{3S} not violated, check 2_{2S}

1_{3S} Rule = Reject the run when a single control measurement exceeds the +3SD or -3SD control limit

Westgard – 2_{2S} Rule

- 2 consecutive control values for the same level fall outside of ±2SD in the same direction, or
- Both controls in the same run exceed ±2SD
- Patient results cannot be reported
- Requires corrective action

2_{2S} Rule = Reject the run when 2 consecutive control measurements exceed the same

Westgard – R_{4S} Rule

- One control exceeds the mean by –2SD, and the other control exceeds the mean by +2SD
- The range between the two results will therefore exceed 4 SD
- Random error has occurred, test run must be rejected

R_{4S} Rule = Reject the run when 1 control measurement exceed the +2SD and the other exceeds the -2SD control limit

Westgard – 4_{1S} Rule

- Requires control data from previous runs
- Four consecutive QC results for one level of control are outside ±1SD, or
- Both levels of control have consecutive results that are outside ±1SD

Westgard – 10_x Rule

- Requires control data from previous runs
- Ten consecutive QC results for one level of control are on one side of the mean, or
- Both levels of control have five consecutive results that are on the same side of the mean

10_x Rule = Reject the run when 10 consecutive control measurements fall on one side of the mean

Westgard Multirule QC

When a rule is violated

- Warning rule = use other rules to inspect the control points
- Rejection rule = "out of control"
 - Stop testing
 - Identify and correct problem
 - Repeat testing on patient samples and controls
 - Do not report patient results until problem is solved and controls indicate proper performance

Solving "out-of-control" problems

- Policies and procedures for remedial action
- Troubleshooting
- Alternatives to run rejection

Summary

- Why QC program?
 - Validates test accuracy and reliability

Summary: How to implement a QC program?

- Establish written policies and procedures
- Assign responsibility for monitoring and reviewing
- Train staff
- Obtain control materials
- Collect data
- Set target values (mean, SD)
- Establish Levey-Jennings charts
- Routinely plot control data
- Establish and implement troubleshooting and corrective action protocols
- Establish and maintain system for documentation